C#线程定义和使用方法详解
C#线程定义和使用方法详解
发布时间:2017-01-07 来源:查字典编辑
摘要:一、C#Thread类的基本用法通过System.Threading.Thread类可以开始新的线程,并在线程堆栈中运行静态或实例方法。可以...

一、C# Thread类的基本用法

通过System.Threading.Thread类可以开始新的线程,并在线程堆栈中运行静态或实例方法。可以通过Thread类的的构造方法传递一个无参数,并且不返回值(返回void)的委托(ThreadStart),这个委托的定义如下:

[ComVisibleAttribute(true)]

public delegate void ThreadStart()

我们可以通过如下的方法来建立并运行一个线程。

复制代码 代码如下:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace MyThread

{

class Program

{

public static void myStaticThreadMethod()

{

Console.WriteLine("myStaticThreadMethod");

}

static void Main(string[] args)

{

Thread thread1 = new Thread(myStaticThreadMethod);

thread1.Start(); // 只要使用Start方法,线程才会运行

}

}

}

除了运行静态的方法,还可以在线程中运行实例方法,代码如下:

复制代码 代码如下:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace MyThread

{

class Program

{

public void myThreadMethod()

{

Console.WriteLine("myThreadMethod");

}

static void Main(string[] args)

{

Thread thread2 = new Thread(new Program().myThreadMethod);

thread2.Start();

}

}

}

如果读者的方法很简单,或出去某种目的,也可以通过匿名委托或Lambda表达式来为Thread的构造方法赋值,代码如下:

复制代码 代码如下:

Thread thread3 = new Thread(delegate() { Console.WriteLine("匿名委托"); });

thread3.Start();

Thread thread4 = new Thread(( ) => { Console.WriteLine("Lambda表达式"); });

thread4.Start();

其中Lambda表达式前面的( )表示没有参数。

为了区分不同的线程,还可以为Thread类的Name属性赋值,代码如下:

复制代码 代码如下:

Thread thread5 = new Thread(()=>{ Console.WriteLine(Thread.CurrentThread.Name); });

thread5.Name = "我的Lamdba";

thread5.Start();

如果将上面thread1至thread5放到一起执行,由于系统对线程的调度不同,输出的结果是不定的,如图1是一种可能的输出结果。

C#线程定义和使用方法详解1

二、 定义一个线程类

我们可以将Thread类封装在一个MyThread类中,以使任何从MyThread继承的类都具有多线程能力。MyThread类的代码如下:

复制代码 代码如下:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading;

namespace MyThread

{

abstract class MyThread

{

Thread thread = null;

abstract public void run();

public void start()

{

if (thread == null)

thread = new Thread(run);

thread.Start();

}

}

}

可以用下面的代码来使用MyThread类。

复制代码 代码如下:

class NewThread : MyThread

{

override public void run()

{

Console.WriteLine("使用MyThread建立并运行线程");

}

}

static void Main(string[] args)

{

NewThread nt = new NewThread();

nt.start();

}

我们还可以利用MyThread来为线程传递任意复杂的参数。详细内容见下节。

三、C# Thread类:为线程传递参数

Thread类有一个带参数的委托类型的重载形式。这个委托的定义如下:

[ComVisibleAttribute(false)]

public delegate void ParameterizedThreadStart(Object obj)

这个Thread类的构造方法的定义如下:

public Thread(ParameterizedThreadStart start);

下面的代码使用了这个带参数的委托向线程传递一个字符串参数:

复制代码 代码如下:

public static void myStaticParamThreadMethod(Object obj)

{

Console.WriteLine(obj);

}

static void Main(string[] args)

{

Thread thread = new Thread(myStaticParamThreadMethod);

thread.Start("通过委托的参数传值");

}

要注意的是,如果使用的是不带参数的委托,不能使用带参数的Start方法运行线程,否则系统会抛出异常。但使用带参数的委托,可以使用thread.Start()来运行线程,这时所传递的参数值为null。

也可以定义一个类来传递参数值,如下面的代码如下:

复制代码 代码如下:

class MyData

{

private String d1;

private int d2;

public MyData(String d1, int d2)

{

this.d1 = d1;

this.d2 = d2;

}

public void threadMethod()

{

Console.WriteLine(d1);

Console.WriteLine(d2);

}

}

MyData myData = new MyData("abcd",1234);

Thread thread = new Thread(myData.threadMethod);

thread.Start();

如果使用在第二节定义的MyThread类,传递参数会显示更简单,代码如下:

复制代码 代码如下:

class NewThread : MyThread

{

private String p1;

private int p2;

public NewThread(String p1, int p2)

{

this.p1 = p1;

this.p2 = p2;

}

override public void run()

{

Console.WriteLine(p1);

Console.WriteLine(p2);

}

}

NewThread newThread = new NewThread("hello world", 4321);

newThread.start();

四、前台和后台线程

使用Thread建立的线程默认情况下是前台线程,在进程中,只要有一个前台线程未退出,进程就不会终止。主线程就是一个前台线程。而后台线程不管线程是否结束,只要所有的前台线程都退出(包括正常退出和异常退出)后,进程就会自动终止。一般后台线程用于处理时间较短的任务,如在一个Web服务器中可以利用后台线程来处理客户端发过来的请求信息。而前台线程一般用于处理需要长时间等待的任务,如在Web服务器中的监听客户端请求的程序,或是定时对某些系统资源进行扫描的程序。下面的代码演示了前台和后台线程的区别

复制代码 代码如下:

public static void myStaticThreadMethod()

{

Thread.Sleep(3000);

}

Thread thread = new Thread(myStaticThreadMethod);

// thread.IsBackground = true;

thread.Start();

如果运行上面的代码,程序会等待3秒后退出,如果将注释去掉,将thread设成后台线程,则程序会立即退出。

要注意的是,必须在调用Start方法之前设置线程的类型,否则一但线程运行,将无法改变其类型。

通过BeginXXX方法运行的线程都是后台线程。

五、C# Thread类:判断多个线程是否都结束的两种方法

确定所有线程是否都完成了工作的方法有很多,如可以采用类似于对象计数器的方法,所谓对象计数器,就是一个对象被引用一次,这个计数器就加1,销毁引用就减1,如果引用数为0,则垃圾搜集器就会对这些引用数为0的对象进行回收。

方法一:线程计数器

线程也可以采用计数器的方法,即为所有需要监视的线程设一个线程计数器,每开始一个线程,在线程的执行方法中为这个计数器加1,如果某个线程结束(在线程执行方法的最后为这个计数器减1),为这个计数器减1。然后再开始一个线程,按着一定的时间间隔来监视这个计数器,如是棕个计数器为0,说明所有的线程都结束了。当然,也可以不用这个监视线程,而在每一个工作线程的最后(在为计数器减1的代码的后面)来监视这个计数器,也就是说,每一个工作线程在退出之前,还要负责检测这个计数器。使用这种方法不要忘了同步这个计数器变量啊,否则会产生意想不到的后果。

方法二:使用Thread.join方法

join方法只有在线程结束时才继续执行下面的语句。可以对每一个线程调用它的join方法,但要注意,这个调用要在另一个线程里,而不要在主线程,否则程序会被阻塞的。

个人感觉这种方法比较好。

线程计数器方法演示:

C#线程定义和使用方法详解2

复制代码 代码如下:

class ThreadCounter : MyThread

{

private static int count = 0;

private int ms;

private static void increment()

{

lock (typeof(ThreadCounter)) // 必须同步计数器

{

count++;

}

}

private static void decrease()

{

lock (typeof(ThreadCounter))

{

count--;

}

}

private static int getCount()

{

lock (typeof(ThreadCounter))

{

return count;

}

}

public ThreadCounter(int ms)

{

this.ms = ms;

}

override public void run()

{

increment();

Thread.Sleep(ms);

Console.WriteLine(ms.ToString()+"毫秒任务结束");

decrease();

if (getCount() == 0)

Console.WriteLine("所有任务结束");

}

}

ThreadCounter counter1 = new ThreadCounter(3000);

ThreadCounter counter2 = new ThreadCounter(5000);

ThreadCounter counter3 = new ThreadCounter(7000);

counter1.start();

counter2.start();

counter3.start();

上面的代码虽然在大多数的时候可以正常工作,但却存在一个隐患,就是如果某个线程,假设是counter1,在运行后,由于某些原因,其他的线程并未运行,在这种情况下,在counter1运行完后,仍然可以显示出“所有任务结束”的提示信息,但是counter2和counter3还并未运行。为了消除这个隐患,可以将increment方法从run中移除,将其放到ThreadCounter的构造方法中,在这时,increment方法中的lock也可以去掉了。代码如:

复制代码 代码如下:

public ThreadCounter(int ms)

{

this.ms = ms;

increment();

}

运行上面的程序后,将显示如图2的结果。

使用Thread.join方法演示

复制代码 代码如下:

private static void threadMethod(Object obj)

{

Thread.Sleep(Int32.Parse(obj.ToString()));

Console.WriteLine(obj + "毫秒任务结束");

}

private static void joinAllThread(object obj)

{

Thread[] threads = obj as Thread[];

foreach (Thread t in threads)

t.Join();

Console.WriteLine("所有的线程结束");

}

static void Main(string[] args)

{

Thread thread1 = new Thread(threadMethod);

Thread thread2 = new Thread(threadMethod);

Thread thread3 = new Thread(threadMethod);

thread1.Start(3000);

thread2.Start(5000);

thread3.Start(7000);

Thread joinThread = new Thread(joinAllThread);

joinThread.Start(new Thread[] { thread1, thread2, thread3 });

}

在运行上面的代码后,将会得到和图2同样的运行结果。上述两种方法都没有线程数的限制,当然,仍然会受到操作系统和硬件资源的限制。

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新C#教程学习
热门C#教程学习
编程开发子分类