Ruby实现的最短编辑距离计算方法
Ruby实现的最短编辑距离计算方法
发布时间:2016-12-28 来源:查字典编辑
摘要:利用动态规划算法,实现最短编辑距离的计算。复制代码代码如下:#encoding:utf-8#author:xujin#date:Nov12,...

利用动态规划算法,实现最短编辑距离的计算。

复制代码 代码如下:

#encoding: utf-8

#author: xu jin

#date: Nov 12, 2012

#EditDistance

#to find the minimum cost by using EditDistance algorithm

#example output:

# "Please input a string: "

# exponential

# "Please input the other string: "

# polynomial

# "The expected cost is 6"

# The result is :

# ["e", "x", "p", "o", "n", "e", "n", "-", "t", "i", "a", "l"]

# ["-", "-", "p", "o", "l", "y", "n", "o", "m", "i", "a", "l"]

p "Please input a string: "

x = gets.chop.chars.map{|c| c}

p "Please input the other string: "

y = gets.chop.chars.map{|c| c}

x.unshift(" ")

y.unshift(" ")

e = Array.new(x.size){Array.new(y.size)}

flag = Array.new(x.size){Array.new(y.size)}

DEL, INS, CHA, FIT = (1..4).to_a #deleat, insert, change, and fit

def edit_distance(x, y, e, flag)

(0..x.length - 1).each{|i| e[i][0] = i}

(0..y.length - 1).each{|j| e[0][j] = j}

diff = Array.new(x.size){Array.new(y.size)}

for i in(1..x.length - 1) do

for j in(1..y.length - 1) do

diff[i][j] = (x[i] == y[j])? 0: 1

e[i][j] = [e[i-1][j] + 1, e[i][j - 1] + 1, e[i-1][j - 1] + diff[i][j]].min

if e[i][j] == e[i-1][j] + 1

flag[i][j] = DEL

elsif e[i][j] == e[i-1][j - 1] + 1

flag[i][j] = CHA

elsif e[i][j] == e[i][j - 1] + 1

flag[i][j] = INS

else flag[i][j] = FIT

end

end

end

end

out_x, out_y = [], []

def solution_structure(x, y, flag, i, j, out_x, out_y)

case flag[i][j]

when FIT

out_x.unshift(x[i])

out_y.unshift(y[j])

solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

when DEL

out_x.unshift(x[i])

out_y.unshift('-')

solution_structure(x, y, flag, i - 1, j, out_x, out_y)

when INS

out_x.unshift('-')

out_y.unshift(y[j])

solution_structure(x, y, flag, i, j - 1, out_x, out_y)

when CHA

out_x.unshift(x[i])

out_y.unshift(y[j])

solution_structure(x, y, flag, i - 1, j - 1, out_x, out_y)

end

#if flag[i][j] == nil ,go here

return if i == 0 && j == 0

if j == 0

out_y.unshift('-')

out_x.unshift(x[i])

solution_structure(x, y, flag, i - 1, j, out_x, out_y)

elsif i == 0

out_x.unshift('-')

out_y.unshift(y[j])

solution_structure(x, y, flag, i, j - 1, out_x, out_y)

end

end

edit_distance(x, y, e, flag)

p "The expected edit distance is #{e[x.length - 1][y.length - 1]}"

solution_structure(x, y, flag, x.length - 1, y.length - 1, out_x, out_y)

puts "The result is : n #{out_x}n #{out_y}"

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新ruby专题学习
热门ruby专题学习
脚本专栏子分类