深入理解堆排序及其分析
深入理解堆排序及其分析
发布时间:2016-12-28 来源:查字典编辑
摘要:记得在学习数据结构的时候一味的想用代码实现算法,重视的是写出来的代码有一个正确的输入,然后有一个正确的输出,那么就很满足了。从网上看了许多的...

记得在学习数据结构的时候一味的想用代码实现算法,重视的是写出来的代码有一个正确的输入,然后有一个正确的输出,那么就很满足了。从网上看了许多的代码,看了之后貌似懂了,自己写完之后也正确了,但是不久之后就忘了,因为大脑在回忆的时候,只依稀记得代码中的部分,那么的模糊,根本不能再次写出正确的代码,也许在第一次写的时候是因为参考了别人的代码,看过之后大脑可以进行短暂的高清晰记忆,于是欺骗了我,以为自己写出来的,满足了成就感。可是代码是计算机识别的,而我们更喜欢文字,图像。所以我们在学习算法的时候要注重算法的原理以及算法的分析,用文字,图像表达出来,然后当需要用的时候再将文字转换为代码。记忆分为三个步骤:编码,存储和检索,就以学习为例,先理解知识,再归纳知识,最后巩固知识,为了以后的应用而方便检索知识。

堆排序过程

堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。

深入理解堆排序及其分析1

所以建堆的过程就是

复制代码 代码如下:

for ( i = headLen/2; i >= 0; i++)

do AdjustHeap(A, heapLen, i)

建堆完成之后,堆如图1.7是个大根堆。将A[0] = 8 与 A[heapLen-1]交换,然后heapLen减一,如图2.1,然后AdjustHeap(A, heapLen-1, 0),如图2.2。如此交换堆的第一个元

素和堆的最后一个元素,然后堆的大小heapLen减一,对堆的大小为heapLen的堆进行调堆,如此循环,直到heapLen == 1时停止,最后得出结果如图3。

深入理解堆排序及其分析2

深入理解堆排序及其分析3

复制代码 代码如下:

/*

输入:数组A,堆的长度hLen,以及需要调整的节点i

功能:调堆

*/

void AdjustHeap(int A[], int hLen, int i)

{

int left = LeftChild(i); //节点i的左孩子

int right = RightChild(i); //节点i的右孩子节点

int largest = i;

int temp;

while(left < hLen || right < hLen)

{

if (left < hLen && A[largest] < A[left])

{

largest = left;

}

if (right < hLen && A[largest] < A[right])

{

largest = right;

}

if (i != largest) //如果最大值不是父节点

{

temp = A[largest]; //交换父节点和和拥有最大值的子节点交换

A[largest] = A[i];

A[i] = temp;

i = largest; //新的父节点,以备迭代调堆

left = LeftChild(i); //新的子节点

right = RightChild(i);

}

else

{

break;

}

}

}

/*

输入:数组A,堆的大小hLen

功能:建堆

*/

void BuildHeap(int A[], int hLen)

{

int i;

int begin = hLen/2 - 1; //最后一个非叶子节点

for (i = begin; i >= 0; i--)

{

AdjustHeap(A, hLen, i);

}

}

/*

输入:数组A,待排序数组的大小aLen

功能:堆排序

*/

void HeapSort(int A[], int aLen)

{

int hLen = aLen;

int temp;

BuildHeap(A, hLen); //建堆

while (hLen > 1)

{

temp = A[hLen-1]; //交换堆的第一个元素和堆的最后一个元素

A[hLen-1] = A[0];

A[0] = temp;

hLen--; //堆的大小减一

AdjustHeap(A, hLen, 0); //调堆

}

}

性能分析

•调堆:上面已经分析了,调堆的运行时间为O(h)。

•建堆:每一层最多的节点个数为n1 = ceil(n/(2^(h+1))),

深入理解堆排序及其分析4

因此,建堆的运行时间是O(n)。

•循环调堆(代码67-74),因为需要调堆的是堆顶元素,所以运行时间是O(h) = O(floor(logn))。所以循环调堆的运行时间为O(nlogn)。

总运行时间T(n) = O(nlogn) + O(n) = O(nlogn)。对于堆排序的最好情况与最坏情况的运行时间,因为最坏与最好的输入都只是影响建堆的运行时间O(1)或者O(n),而在总体时间中占重要比例的是循环调堆的过程,即O(nlogn) + O(1) =O(nlogn) + O(n) = O(nlogn)。因此最好或者最坏情况下,堆排序的运行时间都是O(nlogn)。而且堆排序还是原地算法(in-place algorithm)。

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新C语言学习
热门C语言学习
编程开发子分类