C++ 基本算法 冒泡法、交换法、选择法、实现代码集合
C++ 基本算法 冒泡法、交换法、选择法、实现代码集合
发布时间:2016-12-28 来源:查字典编辑
摘要:1.冒泡法:这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:复制代码代码如下:#includevoidBub...

1.冒泡法:

这是最原始,也是众所周知的最慢的算法了。

他的名字的由来因为它的工作看来象是冒泡:

复制代码 代码如下:

#include <iostream.h>

void BubbleSort(int* pData,int Count)

{

int iTemp;

for(int i=1;i<Count;i++) {

for(int j=Count-1;j>=i;j--) {

if(pData[j]<pData[j-1]) {

iTemp = pData[j-1];

pData[j-1] = pData[j];

pData[j] = iTemp;

}

}

}

}

void main() {

int data[] = {10,9,8,7,6,5,4};

BubbleSort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

倒序(最糟情况)

第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)

第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次交换次数:6次

其他:第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)

第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)

第一轮:7,8,10,9->7,8,9,10(交换1次) 循环次数:6次交换次数:3次 上面我们给出了程序段,

现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。

从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。写成公式就是1/2*(n-1)*n。

现在注意,我们给出O方法的定义: 若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)=O(g(n))=O(n*n)。

所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。

其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。

当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。

2.交换法:

交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。

复制代码 代码如下:

#include <iostream.h>

void ExchangeSort(int* pData,int Count)

{

int iTemp;

for(int i=0;i<Count-1;i++)

{

for(int j=i+1;j<Count;j++)

{

if(pData[j]<pData)

{

iTemp = pData;

pData = pData[j];

pData[j] = iTemp;

}

}

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

ExchangeSort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

倒序(最糟情况)

第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)

第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:6次

其他:

第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)

第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)

第一轮:7,8,10,9->7,8,9,10(交换1次)

循环次数:6次

交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。p#副标题#e#

3.选择法:

现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。

复制代码 代码如下:

#include <iostream.h>

void SelectSort(int* pData,int Count)

{

int iTemp;

int iPos;

for(int i=0;i<Count-1;i++)

{

iTemp = pData;

iPos = i;

for(int j=i+1;j<Count;j++)

{

if(pData[j]<iTemp)

{

iTemp = pData[j];

iPos = j;

}

}

pData[iPos] = pData;

pData = iTemp;

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

SelectSort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

倒序(最糟情况)

第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)

第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)

第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)

循环次数:6次

交换次数:2次

其他:

第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)

第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)

第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)

循环次数:6次

交换次数:3次

遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。

我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n

所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。4.插入法:

插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张

复制代码 代码如下:

#include <iostream.h>

void InsertSort(int* pData,int Count)

{

int iTemp;

int iPos;

for(int i=1;i<Count;i++)

{

iTemp = pData;

iPos = i-1;

while((iPos>=0) && (iTemp<pData[iPos]))

{

pData[iPos+1] = pData[iPos];

iPos--;

}

pData[iPos+1] = iTemp;

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

InsertSort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

倒序(最糟情况)

第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)

第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)

第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)

循环次数:6次

交换次数:3次

其他:

第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)

第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)

第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)

循环次数:4次

交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似选择法),但我们每次要进行与内层循环相同次数的‘='操作。正常的一次交换我们需要三次‘='而这里显然多了一些,所以我们浪费了时间。最终,我个人认为,在简单排序算法中,选择法是最好的。插入排序

复制代码 代码如下:

#include <iostream>

using namespace std;

void coutstream(int a[],int n){

for(int i=0;i!=n;i++)

cout<<a<<" ";

}

void insertsort(int a[],int n){

int temp;

for(int i=1;i<n;i++)

{

int j=i;

temp=a; //先把a位置的数据存起来

while(j>0&&temp<a[j-1])

{

a[j]=a[j-1];

j--;

}

a[j]=temp;

}

}

int main()

{

int a[5]={1,6,4,8,4};

insertsort(a,5);//插入排序

coutstream(a,5);//

return 0;

}

二、高级排序算法:

高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(最容易的方法——递归)。

1.快速排序:

复制代码 代码如下:

#include <iostream.h>

void run(int* pData,int left,int right)

{

int i,j;

int middle,iTemp;

i = left;

j = right;

middle = pData[(left+right)/2]; //求中间值

do{

while((pData<middle) && (i<right))//从左扫描大于中值的数

i++;

while((pData[j]>middle) && (j>left))//从右扫描大于中值的数

j--;

if(i<=j)//找到了一对值

{

//交换

iTemp = pData;

pData = pData[j];

pData[j] = iTemp;

i++;

j--;

}

}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边

if(left<j)

run(pData,left,j);

//当右边部分有值(right>i),递归右半边

if(right>i)

run(pData,i,right);

}

void QuickSort(int* pData,int Count)

{

run(pData,0,Count-1);

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

QuickSort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况

1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。

2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。

第一层递归,循环n次,第二层循环2*(n/2)......

所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n

所以算法复杂度为O(log2(n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)

三、其他排序

1.双向冒泡:

通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。

代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。

写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。

反正我认为这是一段有趣的代码,值得一看。

复制代码 代码如下:

#include <iostream.h>

void Bubble2Sort(int* pData,int Count)

{

int iTemp;

int left = 1;

int right =Count -1;

int t;

do

{

//正向的部分

for(int i=right;i>=left;i--)

{

if(pData<pData[i-1])

{

iTemp = pData;

pData = pData[i-1];

pData[i-1] = iTemp;

t = i;

}

}

left = t+1;

//反向的部分

for(i=left;i<right+1;i++)

{

if(pData<pData[i-1])

{

iTemp = pData;

pData = pData[i-1];

pData[i-1] = iTemp;

t = i;

}

}

right = t-1;

}while(left<=right);

}

void main()

{

int data[] = {10,9,8,7,6,5,4};

Bubble2Sort(data,7);

for (int i=0;i<7;i++)

cout<<data<<" ";

cout<<"n";

}

快速排序

复制代码 代码如下:

#include <iostream>

using namespace std;

class QuickSort

{

public:

void quick_sort(int* x,int low,int high)

{

int pivotkey;

if(low <high)

{

pivotkey=partion(x,low,high);

quick_sort(x,low,pivotkey-1);

quick_sort(x,pivotkey+1,high);

}

}

int partion(int* x,int low,int high)

{

int pivotkey;

pivotkey=x[low];

while(low <high)

{

while (low <high&&x[high]>=pivotkey)

--high; //还有while循环只执行这一句

x[low]=x[high];

while (low <high&&x[low] <=pivotkey)

++low; //还有while循环只执行这一句

x[high]=x[low];

}

x[low]=pivotkey;

return low;

}

};

int main()

{

int x[10]={52,49,80,36,14,58,61,97,23,65};

QuickSort qs;

qs.quick_sort(x,0,9);

cout <<"排好序的数字序列为:" <<endl;

for (int i=0;i <10;i++)

{

printf("%d ",x);

}

return 0;

}

2.SHELL排序

这个排序非常复杂,看了程序就知道了。

首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。

工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序以次类推。

复制代码 代码如下:

#include <iostream.h>

void ShellSort(int* pData,int Count)

{

int step[4];

step[0] = 9;

step[1] = 5;

step[2] = 3;

step[3] = 1;

int iTemp;

int k,s,w;

for(int i=0;i<4;i++)

{

k = step;

s = -k;

for(int j=k;j<Count;j++)

{

iTemp = pData[j];

w = j-k;//求上step个元素的下标

if(s ==0)

{

s = -k;

s++;

pData[s] = iTemp;

}

while((iTemp<pData[w]) && (w>=0) && (w<=Count))

{

pData[w+k] = pData[w];

w = w-k;

}

pData[w+k] = iTemp;

}

}

}

void main()

{

int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};

ShellSort(data,12);

for (int i=0;i<12;i++)

cout<<data<<" ";

cout<<"n";

}

程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0步长造成程序异常而写的代码。这个代码很值得一看。这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并“超出本书讨论范围”的原因(我也不知道过程),我们只有结果。冒泡排序性能优化版#include <iostream>

复制代码 代码如下:

using namespace std;

void maopao(int *list,int n)

{

int i=n,j,temp;

bool exchange;//当数据已经排好时,退出循环

for(i=0;i<n;i++)

{

exchange=false;

for (j=0;j<n-i-1;j++)

{

if (list[j]>list[j+1])

{

temp=list[j];

list[j]=list[j+1];

list[j+1]=temp;

exchange=true;

}

}

if (!exchange)

{

return;

}

}

}

int main()

{

int a[7]={32,43,22,52,2,10,30};

maopao(a,7);

for(int i=0;i<7;i++)

cout<<a<<" ";

return 0;

}

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新C语言学习
热门C语言学习
编程开发子分类