深入理解Android Matrix理论与使用的详解
深入理解Android Matrix理论与使用的详解
发布时间:2016-12-28 来源:查字典编辑
摘要:以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。...

以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。

首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。

深入理解Android Matrix理论与使用的详解1

首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:

x = x0 + △x

y = y0 + △y

采用矩阵表达上述如下:

深入理解Android Matrix理论与使用的详解2

上述也类似与图像的平移,通过上述矩阵我们发现,只需要修改矩阵右上角的2个元素就可以了。

我们回头看上述矩阵的划分:

深入理解Android Matrix理论与使用的详解3

为了验证上面的功能划分,我们举个具体的例子:现设点P0(x0 ,y0)进行平移后,移到P(x,y),其中x放大a倍,y放大b倍,

矩阵就是:深入理解Android Matrix理论与使用的详解4,按照类似前面“平移”的方法就验证。

图像的旋转稍微复杂:现设点P0(x0, y0)旋转θ角后的对应点为P(x, y)。通过使用向量,我们得到如下:

x0 = r cosα

y0 = r sinα

x = r cos(α+θ) = x0 cosθ - y0 sinθ

y = r sin(α+θ) = x0 sinθ + y0 cosθ

于是我们得到矩阵:深入理解Android Matrix理论与使用的详解5

如果图像围绕着某个点(a ,b)旋转呢?则先要将坐标平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点,在后面的篇幅中我们将详细介绍。

Matrix学习——如何使用Matrix

本篇幅我们就结合Android 中的android.graphics.Matrix来具体说明,还记得我们前面说的图像旋转的矩阵:

深入理解Android Matrix理论与使用的详解6

从最简单的旋转90度的是:

深入理解Android Matrix理论与使用的详解7

在android.graphics.Matrix中有对应旋转的函数:

Matrix matrix = new Matrix();

matrix.setRotate(90);

Test.Log(MAXTRIX_TAG,”setRotate(90):%s” , matrix.toString());

深入理解Android Matrix理论与使用的详解8

查看运行后的矩阵的值(通过Log输出):

深入理解Android Matrix理论与使用的详解9

与上面的公式基本完全一样(android.graphics.Matrix采用的是浮点数,而我们采用的整数)。

有了上面的例子,相信大家就可以亲自尝试了。通过上面的例子我们也发现,我们也可以直接来初始化矩阵,比如说要旋转30度:

深入理解Android Matrix理论与使用的详解10

前面给大家介绍了这么多,下面我们开始介绍图像的镜像,分为2种:水平镜像、垂直镜像。先介绍如何实现垂直镜像,什么是垂直镜像就不详细说明。图像的垂直镜像变化也可以用矩阵变化的表示,设点P0(x0 ,y0 )进行镜像后的对应点为P(x ,y ),图像的高度为fHeight,宽度为fWidth,原图像中的P0(x0 ,y0 )经过垂直镜像后的坐标变为(x0 ,fHeight- y0);

x = x0

y = fHeight – y0

推导出相应的矩阵是:

深入理解Android Matrix理论与使用的详解11

finalfloatf[] = {1.0F,0.0F,0.0F,0.0F,-1.0F,120.0F,0.0F,0.0F,1.0F};

Matrix matrix =newMatrix();

matrix.setValues(f);

按照上述方法运行后的结果:

深入理解Android Matrix理论与使用的详解12

至于水平镜像采用类似的方法,大家可以自己去试试吧。

实际上,使用下面的方式也可以实现垂直镜像:

Matrix matrix =newMatrix();

matrix.setScale (1.0,-1.0);

matrix.postTraslate(0, fHeight);

这就是我们将在后面的篇幅中详细说明。

Matrix学习——图像的复合变化

Matrix学习——基础知识篇幅中,我们留下一个话题:如果图像围绕着某个点P(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点。

我们需要3步:

1.平移——将坐标系平移到点P(a,b);

2.旋转——以原点为中心旋转图像;

3.平移——将旋转后的图像平移回到原来的坐标原点;

相比较前面说的图像的几何变化(基本的图像几何变化),这里需要平移——旋转——平移,这种需要多种图像的几何变化就叫做图像的复合变化。

设对给定的图像依次进行了基本变化F1、F2、F3…..、Fn,它们的变化矩阵分别为T1、T2、T3…..、Tn,图像复合变化的矩阵T可以表示为:T = TnTn-1…T1。

按照上面的原则,围绕着某个点(a,b)旋转θ的变化矩阵序列是:

深入理解Android Matrix理论与使用的详解13

按照上面的公式,我们列举一个简单的例子:围绕(100,100)旋转30度(sin 30 = 0.5 ,cos 30 = 0.866)

floatf[]= { 0.866F, -0.5F, 63.4F,0.5F, 0.866F,-36.6F,0.0F, 0.0F, 1.0F };

matrix =newMatrix();

matrix.setValues(f);

旋转后的图像如下:

深入理解Android Matrix理论与使用的详解14

Android为我们提供了更加简单的方法,如下:

Matrix matrix = new Matrix();

matrix.setRotate(30,100,100);

矩阵运行后的实际结果:

深入理解Android Matrix理论与使用的详解15

与我们前面通过公式获取得到的矩阵完全一样。

在这里我们提供另外一种方法,也可以达到同样的效果:

float a = 100.0F,b = 100.0F;

matrix = new Matrix();

matrix.setTranslate(a,b);

matrix.preRotate(30);

matrix.preTranslate(-a,-b);

将在后面的篇幅中为大家详细解析

通过类似的方法,我们还可以得到:相对点P(a,b)的比例[sx,sy]变化矩阵

深入理解Android Matrix理论与使用的详解16

Matrix学习——Preconcats or Postconcats?

从最基本的高等数学开始,Matrix的基本操作包括:+、*。Matrix的乘法不满足交换律,也就是说A*B ≠B*A。还有2种常见的矩阵:

深入理解Android Matrix理论与使用的详解17

有了上面的基础,下面我们开始进入主题。由于矩阵不满足交换律,所以用矩阵B乘以矩阵A,需要考虑是左乘(B*A),还是右乘(A*B)。在Android的android.graphics.Matrix中为我们提供了类似的方法,也就是我们本篇幅要说明的Preconcats matrix 与 Postconcats matrix。下面我们还是通过具体的例子还说明:

深入理解Android Matrix理论与使用的详解18

通过输出的信息,我们分析其运行过程如下:

深入理解Android Matrix理论与使用的详解19

看了上面的输出信息。我们得出结论:Preconcats matrix相当于右乘矩阵,Postconcats matrix相当于左乘矩阵。

深入理解Android Matrix理论与使用的详解20

Matrix学习——错切变换

什么是图像的错切变换(Shear transformation)?我们还是直接看图片错切变换后是的效果:

深入理解Android Matrix理论与使用的详解21

深入理解Android Matrix理论与使用的详解22

对图像的错切变换做个总结:

深入理解Android Matrix理论与使用的详解23

x = x0 + b*y0;

y = d*x0 + y0;

深入理解Android Matrix理论与使用的详解24

这里再次给大家介绍一个需要注意的地方:

深入理解Android Matrix理论与使用的详解25

通过以上,我们发现Matrix的setXXXX()函数,在调用时调用了一次reset(),这个在复合变换时需要注意。

Matrix学习——对称变换(反射)

什么是对称变换?具体的理论就不详细说明了,图像的镜像就是对称变换中的一种。

深入理解Android Matrix理论与使用的详解26

利用上面的总结做个具体的例子,产生与直线y= – x对称的反射图形,代码片段如下:

深入理解Android Matrix理论与使用的详解27

当前矩阵输出是:

深入理解Android Matrix理论与使用的详解28

图像变换的效果如下:

深入理解Android Matrix理论与使用的详解29

附:三角函数公式

两角和公式

sin(a+b)=sinacosb+cosasinb

sin(a-b)=sinacosb-sinbcosa 

cos(a+b)=cosacosb-sinasinb

cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(a-b)=(tana-tanb)/(1+tanatanb)

cot(a+b)=(cotacotb-1)/(cotb+cota) 

cot(a-b)=(cotacotb+1)/(cotb-cota)

倍角公式

tan2a=2tana/[1-(tana)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

sin2a=2sina*cosa

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)

tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))

cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) 

tan(a/2)=(1-cosa)/sina=sina/(1+cosa)

和差化积

2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b) )

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(pi/2-a)=cos(a)

cos(pi/2-a)=sin(a)

sin(pi/2+a)=cos(a)

cos(pi/2+a)=-sin(a)

sin(pi-a)=sin(a)

cos(pi-a)=-cos(a)

sin(pi+a)=-sin(a)

cos(pi+a)=-cos(a)

tga=tana=sina/cosa

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

其它公式

a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]

a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]

1+sin(a)=(sin(a/2)+cos(a/2))^2

1-sin(a)=(sin(a/2)-cos(a/2))^2

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

双曲函数

sinh(a)=(e^a-e^(-a))/2

cosh(a)=(e^a+e^(-a))/2

tgh(a)=sinh(a)/cosh(a)

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新安卓软件开发学习
热门安卓软件开发学习
编程开发子分类