Ruby实现的最优二叉查找树算法
Ruby实现的最优二叉查找树算法
发布时间:2015-06-06 来源:查字典编辑
摘要:这篇文章主要介绍了Ruby实现的最优二叉查找树算法,本文直接给出实现代码,需要的朋友可以参考下算法导论上的伪码改写而成,加上导论的课后练习第...

这篇文章主要介绍了Ruby实现的最优二叉查找树算法,本文直接给出实现代码,需要的朋友可以参考下

算法导论上的伪码改写而成,加上导论的课后练习第一题的解的构造函数。

代码如下:

#encoding: utf-8

=begin

author: xu jin

date: Nov 11, 2012

Optimal Binary Search Tree

to find by using EditDistance algorithm

refer to <>

example output:

"k2 is the root of the tree."

"k1 is the left child of k2."

"d0 is the left child of k1."

"d1 is the right child of k1."

"k5 is the right child of k2."

"k4 is the left child of k5."

"k3 is the left child of k4."

"d2 is the left child of k3."

"d3 is the right child of k3."

"d4 is the right child of k4."

"d5 is the right child of k5."

The expected cost is 2.75.

=end

INFINTIY = 1 / 0.0

a = ['', 'k1', 'k2', 'k3', 'k4', 'k5']

p = [0, 0.15, 0.10, 0.05, 0.10, 0.20]

q = [0.05, 0.10, 0.05, 0.05, 0.05 ,0.10]

e = Array.new(a.size + 1){Array.new(a.size + 1)}

root = Array.new(a.size + 1){Array.new(a.size + 1)}

def optimalBST(p, q, n, e, root)

w = Array.new(p.size + 1){Array.new(p.size + 1)}

for i in (1..n + 1)

e[i][i - 1] = q[i - 1]

w[i][i - 1] = q[i - 1]

end

for l in (1..n)

for i in (1..n - l + 1)

j = i + l -1

e[i][j] = 1 / 0.0

w[i][j] = w[i][j - 1] + p[j] + q[j]

for r in (i..j)

t = e[i][r - 1] + e[r + 1][j] + w[i][j]

if t < e[i][j]

e[i][j] = t

root[i][j] = r

end

end

end

end

end

def printBST(root, i ,j, signal)

return if i > j

if signal == 0

p "k#{root[i][j]} is the root of the tree."

signal = 1

end

r = root[i][j]

#left child

if r - 1< i

p "d#{r - 1} is the left child of k#{r}."

else

p "k#{root[i][r - 1]} is the left child of k#{r}."

printBST(root, i, r - 1, 1 )

end

#right child

if r >= j

p "d#{r} is the right child of k#{r}."

else

p "k#{root[r + 1][j]} is the right child of k#{r}."

printBST(root, r + 1, j, 1)

end

end

optimalBST(p, q, p.size - 1, e, root)

printBST(root, 1, a.size-1, 0)

puts "nThe expected cost is #{e[1][a.size-1]}."

推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关阅读
网友关注
最新编程语言综合学习
热门编程语言综合学习
编程开发子分类