MongoDB aggregate 运用篇个人总结_MongoDB教程-查字典教程网
MongoDB aggregate 运用篇个人总结
MongoDB aggregate 运用篇个人总结
发布时间:2016-12-28 来源:查字典编辑
摘要:最近一直在用mongodb,有时候会需要用到统计,在网上查了一些资料,最适合用的就是用aggregate,以下介绍一下自己运用的心得。。Mo...

最近一直在用mongodb,有时候会需要用到统计,在网上查了一些资料,最适合用的就是用aggregate,以下介绍一下自己运用的心得。。

MongoDB 聚合

MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。有点类似sql语句中的 count(*)。

aggregate() 方法

MongoDB中聚合的方法使用aggregate()。

语法

aggregate() 方法的基本语法格式如下所示:

db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

实例

集合中的数据如下:

{ _id: ObjectId(7df78ad8902c) title: 'MongoDB Overview', description: 'MongoDB is no sql database', by_user: 'jb51.net', url: 'http://www.jb51.net', tags: ['mongodb', 'database', 'NoSQL'], likes: 100 }, { _id: ObjectId(7df78ad8902d) title: 'NoSQL Overview', description: 'No sql database is very fast', by_user: 'jb51.net', url: 'http://www.jb51.net', tags: ['mongodb', 'database', 'NoSQL'], likes: 10 }, { _id: ObjectId(7df78ad8902e) title: 'Neo4j Overview', description: 'Neo4j is no sql database', by_user: 'Neo4j', url: 'http://www.neo4j.com', tags: ['neo4j', 'database', 'NoSQL'], likes: 750 },

现在我们通过以上集合计算每个作者所写的文章数,使用aggregate()计算结果如下:

> db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : 1}}}]) { "result" : [ { "_id" : "w3cschool.cc", "num_tutorial" : 2 }, { "_id" : "Neo4j", "num_tutorial" : 1 } ], "ok" : 1 } >

以上实例类似sql语句: select by_user, count(*) from mycol group by by_user

在上面的例子中,我们通过字段by_user字段对数据进行分组,并计算by_user字段相同值的总和。

下表展示了一些聚合的表达式:

表达式 描述 实例
$sum 计算总和。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])
$avg 计算平均值 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])
$min 获取集合中所有文档对应值得最小值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])
$max 获取集合中所有文档对应值得最大值。 db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])
$push 在结果文档中插入值到一个数组中。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])
$addToSet 在结果文档中插入值到一个数组中,但不创建副本。 db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])
$first 根据资源文档的排序获取第一个文档数据。 db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])
$last 根据资源文档的排序获取最后一个文档数据 db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])

管道的概念

管道在Unix和Linux中一般用于将当前命令的输出结果作为下一个命令的参数。

MongoDB的聚合管道将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理。管道操作是可以重复的。

表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档。

这里我们介绍一下聚合框架中常用的几个操作:

$project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档。

$match:用于过滤数据,只输出符合条件的文档。$match使用MongoDB的标准查询操作。

$limit:用来限制MongoDB聚合管道返回的文档数。

$skip:在聚合管道中跳过指定数量的文档,并返回余下的文档。

$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。

$group:将集合中的文档分组,可用于统计结果。

$sort:将输入文档排序后输出。

$geoNear:输出接近某一地理位置的有序文档。

管道操作符实例

1、$project实例

db.article.aggregate( { $project : { title : 1 , author : 1 , }} );

这样的话结果中就只还有_id,tilte和author三个字段了,默认情况下_id字段是被包含的,如果要想不包含_id话可以这样:

db.article.aggregate( { $project : { _id : 0 , title : 1 , author : 1 }});

2.$match实例

db.articles.aggregate( [ { $match : { score : { $gt : 70, $lte : 90 } } }, { $group: { _id: null, count: { $sum: 1 } } } ] );

$match用于获取分数大于70小于或等于90记录,然后将符合条件的记录送到下一阶段$group管道操作符进行处理。

3.$skip实例

db.article.aggregate( { $skip : 5 });

经过$skip管道操作符处理后,前五个文档被"过滤"掉。

别人写过的我就不过多描述了,大家一搜能搜索到N多一样的,我写一下我的总结。

基础知识

请大家自行查找更多,以下是关键文档。

操作符介绍:

$project:包含、排除、重命名和显示字段

$match:查询,需要同find()一样的参数

$limit:限制结果数量

$skip:忽略结果的数量

$sort:按照给定的字段排序结果

$group:按照给定表达式组合结果

$unwind:分割嵌入数组到自己顶层文件

文档:MongoDB 官方aggregate说明。

相关使用:

db.collection.aggregate([array]);

array可是是任何一个或多个操作符。

group和match的用法,使用过sqlserver,group的用法很好理解,根据指定列进行分组统计,可以统计分组的数量,也能统计分组中的和或者平均值等。

group之前的match,是对源数据进行查询,group之后的match是对group之后的数据进行筛选;

同理,sort,skip,limit也是同样的原理;

{_id:1,name:"a",status:1,num:1} {_id:2,name:"a",status:0,num:2} {_id:3,name:"b",status:1,num:3} {_id:4,name:"c",status:1,num:4} {_id:5,name:"d",status:1,num:5}

以下是示例:

应用一:统计name的数量和总数;

db.collection.aggregate([ {$group:{_id:"$name",count:{$sum:1},total:{$sum:"$num"}} ]);

应用二:统计status=1的name的数量;

db.collection.aggregate([ {$match:{status:1}}, {$group:{_id:"$name",count:{$sum:1}}} ]);

应用三:统计name的数量,并且数量为小于2的;

db.collection.aggregate([ {$group:{_id:"$name",count:{$sum:1}}, {$match:{count:{$lt:2}}} ]);

应用四:统计stauts=1的name的数量,并且数量为1的;

db.collection.aggregate([ {$match:{status:1}}, {$group:{_id:"$name",count:{$sum:1}}}, {$match:{count:1}} ]);

多列group,根据name和status进行多列

db.collection.aggregate([ {$group:{_id:{name:"$name",st:"$status"},count:{$sum:1}}} ]);

$project该操作符很简单,

db.collection.aggregate([ {$project:{name:1,status:1}} ]);

结果是,只有_id,name,status三个字段的表数据,相当于sql表达式 select _id,name,status from collection

$unwind

这个操作符可以将一个数组的文档拆分为多条文档,在特殊条件下有用,本人暂没有进行过多的研究。

以上基本就可以实现大部分统计了,group前条件,group后条件,是重点。

相关阅读
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  • 最新MongoDB学习
    热门MongoDB学习
    编程开发子分类