Dijkstra最短路径算法实现代码_C语言教程-查字典教程网
Dijkstra最短路径算法实现代码
Dijkstra最短路径算法实现代码
发布时间:2016-12-28 来源:查字典编辑
摘要:Dijkstra的最短路径算法是基于前驱顶点的最短路径计算的,整体上来讲还是比较简单的,下面是代码:复制代码代码如下:#include#in...

Dijkstra的最短路径算法是基于前驱顶点的最短路径计算的,整体上来讲还是比较简单的,下面是代码:

复制代码 代码如下:

#include <iostream>

#include <vector>

#include <limits>

void shortestpath( const std::vector <std::vector< short> >& paths, int from, std::vector< short>& path){

std:: vector<bool> flags(paths.size(), false);

std:: vector<short> distance(paths.size(), 0);

path.resize(paths.size(), 0);

for(size_t i = 0; i != paths.size(); ++i){

distance[i] = paths[from][i];

}

flags[from] = 1;

int min, pos;

for(size_t i = 1; i != paths.size(); ++i){

pos = -1;

min = std:: numeric_limits<short>::max();

for(size_t j = 0; j != paths.size(); ++j){

if(!flags[j] && distance[j] < min){

min = distance[j];

pos = j;

}

}

if(pos == -1)

break;

flags[pos] = true;

for(size_t j = 0; j != paths.size(); ++j){

if(!flags[j] && paths[pos][j] != 0

&& paths[pos][j] < std::numeric_limits <int>:: max()

&& min+paths[pos][j] < distance[j]){

distance[j] = min + paths[pos][j];

path[j] = pos;

}

}

}

for(size_t i = 0; i != distance.size(); ++i){

std::cout << distance[i] << " " << std::flush;

}

std::cout << std:: endl;

}

int main(){

std::cout << "请输入顶点数:" << std::flush;

int sum; std::cin >> sum;

std:: vector<std::vector <short> > paths;

for(int i = 0; i != sum; ++i){

paths.push_back(std:: vector<short>(sum, std::numeric_limits< short>::max()));

paths[i][i] = 0;

}

std::cout << "请输入边数:" << std::flush;

std::cin >> sum;

int vi, vj, weight;

for(int i = 0; i != sum; ++i){

std::cin >> vi >> vj >> weight;

paths[vi][vj] = weight;

paths[vj][vi] = weight;

}

std:: vector<short> path;

shortestpath(paths, 0, path);

std::cout << "最近路径结果为:" << std::flush;

for(size_t i = 0; i != path.size(); ++i){

std::cout << path[i] << " " << std::flush;

}

std::cout << std:: endl;

return 0;

}

相关阅读
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  • 最新C语言学习
    热门C语言学习
    编程开发子分类