最小生成树算法C语言代码实例_C语言教程-查字典教程网
最小生成树算法C语言代码实例
最小生成树算法C语言代码实例
发布时间:2016-12-28 来源:查字典编辑
摘要:在贪婪算法这一章提到了最小生成树的一些算法,首先是Kruskal算法,实现如下:MST.h复制代码代码如下:#ifndefH_MST#def...

在贪婪算法这一章提到了最小生成树的一些算法,首先是Kruskal算法,实现如下:

MST.h

复制代码 代码如下:

#ifndef H_MST

#define H_MST

#define NODE node *

#define G graph *

#define MST edge **

/* the undirect graph start */

typedef struct _node {

char data;

int flag;

struct _node *parent;

} node;

typedef struct _edge {

node *A;

node *B;

int w;

} edge;

typedef struct _graph {

node **nodelist;

int nodeLen;

edge **edgelist;

int edgeLen;

} graph;

/* the undirect graph end */

int kruskal(G , edge *[]);

int makeset(NODE);

int find(NODE , NODE);

int merge(NODE , NODE);

int comp(const void *, const void *);

#endif

MST.c

复制代码 代码如下:

#include "mst.h"

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

/* Construct the undirect connected graph */

graph g;

g.nodeLen = 6;

g.edgeLen = 10;

node node_a, node_b, node_c, node_d, node_e, node_f;

edge edge_1, edge_2, edge_3, edge_4, edge_5, edge_6, edge_7, edge_8, edge_9, edge_10;

node_a.data = 'a';

node_a.flag = 0;

node_a.parent = (node *)malloc(sizeof(node));

node_b.data = 'b';

node_b.flag = 0;

node_b.parent = (node *)malloc(sizeof(node));

node_c.data = 'c';

node_c.flag = 0;

node_c.parent = (node *)malloc(sizeof(node));

node_d.data = 'd';

node_d.flag = 0;

node_d.parent = (node *)malloc(sizeof(node));

node_e.data = 'e';

node_e.flag = 0;

node_e.parent = (node *)malloc(sizeof(node));

node_f.data = 'f';

node_f.flag = 0;

node_f.parent = (node *)malloc(sizeof(node));

edge_1.A = &node_a;

edge_1.B = &node_b;

edge_1.w = 5;

edge_2.A = &node_a;

edge_2.B = &node_c;

edge_2.w = 6;

edge_3.A = &node_a;

edge_3.B = &node_d;

edge_3.w = 4;

edge_4.A = &node_b;

edge_4.B = &node_c;

edge_4.w = 1;

edge_5.A = &node_b;

edge_5.B = &node_d;

edge_5.w = 2;

edge_6.A = &node_c;

edge_6.B = &node_d;

edge_6.w = 2;

edge_7.A = &node_c;

edge_7.B = &node_e;

edge_7.w = 5;

edge_8.A = &node_c;

edge_8.B = &node_f;

edge_8.w = 3;

edge_9.A = &node_d;

edge_9.B = &node_f;

edge_9.w = 4;

edge_10.A = &node_e;

edge_10.B = &node_f;

edge_10.w = 4;

node **nodelist;

nodelist = (node **)malloc(sizeof(node *) * g.nodeLen);

edge **edgelist;

edgelist = (edge **)malloc(sizeof(edge *) * g.edgeLen);

nodelist[0] = &node_a;

nodelist[1] = &node_b;

nodelist[2] = &node_c;

nodelist[3] = &node_d;

nodelist[4] = &node_e;

nodelist[5] = &node_f;

edgelist[0] = &edge_1;

edgelist[1] = &edge_2;

edgelist[2] = &edge_3;

edgelist[3] = &edge_4;

edgelist[4] = &edge_5;

edgelist[5] = &edge_6;

edgelist[6] = &edge_7;

edgelist[7] = &edge_8;

edgelist[8] = &edge_9;

edgelist[9] = &edge_10;

g.nodelist = nodelist;

g.edgelist = edgelist;

edge *X[g.nodeLen-1];

int e = 0;

while (e < g.edgeLen)

{

printf("%c-%c %dn", g.edgelist[e]->A->data, g.edgelist[e]->B->data, g.edgelist[e]->w);

e++;

}

printf("------------------------------------------------------n");

kruskal(&g, X);

e = 0;

while (e < (g.nodeLen-1))

{

printf("%c-%c %dn", X[e]->A->data, X[e]->B->data, X[e]->w);

e++;

}

}

int kruskal(G g, edge *pX[])

{

int i, j;

/* Initially every disjoint set have one node */

for (i = 0; i < g->nodeLen; i++)

makeset(g->nodelist[i]);

/* sort the edgelist */

qsort(g->edgelist, g->edgeLen, sizeof(edge *), comp);

int e = 0;

while (e < g->edgeLen)

{

printf("%c-%c %dn", g->edgelist[e]->A->data, g->edgelist[e]->B->data, g->edgelist[e]->w);

e++;

}

printf("------------------------------------------------------n");

node da, db;

da.parent = (node *)malloc(sizeof(node));

db.parent = (node *)malloc(sizeof(node));

for (j = 0; j < g->edgeLen; j++)

{

find(g->edgelist[j]->A, &da);

find(g->edgelist[j]->B, &db);

if (da.data != db.data)

{

merge(g->edgelist[j]->A, g->edgelist[j]->B);

*pX++ = g->edgelist[j];

}

}

}

int makeset(NODE n)

{

n->parent = n;

}

int find(NODE n, NODE ds)

{

if (n->parent == n)

{

ds->data = n->data;

ds->flag = 1;

ds->parent = n->parent;

}

if (n->parent != n)

find(n->parent, ds);

}

int merge(NODE da, NODE db)

{

if (da->flag)

db->parent = da;

else

da->parent = db;

}

int comp(const void *ea, const void *eb)

{

if ((*(edge **)ea)->w > (*(edge **)eb)->w) return 1;

else if ((*(edge **)ea)->w == (*(edge **)eb)->w ) return 0;

else return -1;

}

在实现这个算法的时候,真正体会到了测试的重要性。程序能成功编译只是完成了一小部分,必须经过反复的测试才能发布。

相关阅读
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
  • 大家都在看
  • 小编推荐
  • 猜你喜欢
  • 最新C语言学习
    热门C语言学习
    编程开发子分类